

SQL Server Performance
on AWS

October 2018

© 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Notices
This document is provided for informational purposes only. It represents AWS’s
current product offerings and practices as of the date of issue of this document,
which are subject to change without notice. Customers are responsible for
making their own independent assessment of the information in this document
and any use of AWS’s products or services, each of which is provided “as is”
without warranty of any kind, whether express or implied. This document does
not create any warranties, representations, contractual commitments,
conditions or assurances from AWS, its affiliates, suppliers or licensors. The
responsibilities and liabilities of AWS to its customers are controlled by AWS
agreements, and this document is not part of, nor does it modify, any agreement
between AWS and its customers.

Contents
Introduction 1

TPC-C Benchmarking 1

Scope 1

Environment 2

HammerDB Workload 2

Instance Types 3

Storage 3

SQL Server Configurations 4

Max Degree of Parallelism 4

Max SQL Server Memory 4

Simple Mode 4

Results 4

Run 1 – GP2 Only 4

Run 2 – GP2 with Transaction Log on Local NVMe Disk 6

Run 3 – All NVMe 7

Final Conclusions and Recommendations 7

Appendix 8

Contributors 12

Document Revisions 12

Abstract
With so many instance types to choose from, it can be challenging for architects
and customers to choose the best ones for migrating their SQL Server workloads
to AWS. Detailed specifications are available for each instance type and storage
options. However, all of this information may be difficult to map to real-world
scenarios.

We introduce this SQL Server Benchmarking whitepaper to address these
challenges. It provides information about how to benchmark instance types to
test how they perform. It also shows the performance numbers from
benchmarking popular combinations of compute and storage instance types.

The paper begins with an explanation of TPC-Benchmarking, introduces you to
HammerDB, the industry default for database benchmarking, and then explains
the scope of the tests. It gives details on the environment, workload, instance
types, storage, and SQL Server configurations. The results of three tests are
discussed:

 The first tests GP2 volumes only.

 The second tests GP2 volumes with the transaction log on the local
NVMe disks.

 The third tests volumes from the instance store NVMe disks.

Final recommendations are provided.

A detailed appendix walks you through configuring HammerDB to run the TPC-
C Hammer benchmark.

Page 1

Introduction
Because there is such a large selection of instance families, generations, and
sizes, it is difficult for architects and customers to select the right instance type.
This is especially true when migrating SQL Server workloads to AWS. Although
AWS publishes detailed specifications on the instance types and storage
options, it can be challenging to map them to real-world workloads.

This paper provides guidance on how to benchmark instance types to see how
they perform. It also provides performance numbers for popular combinations
of compute and storage.

TPC-C Benchmarking
The TPC-C Benchmark is an online transaction processing (OLTP) benchmark.
TPC-C involves a combination of five concurrent transactions of different types
and complexity. The database is composed of nine types of tables with a wide
range of record and population sizes. TPC-C is measured in transactions per
minute (TPM).

While the benchmark portrays the activity of a wholesale supplier, TPC-C is not
limited to the activity of any particular business segment. Rather, it represents
any industry that must manage, sell, or distribute a product or service.

In this paper, we used HammerDB, an open-source, cross-platform, database
load-testing and benchmarking tool. HammerDB is regarded as the industry
‘default’ for database benchmarking. We used it to generate TPC-C–like
workloads.

Scope
We ran a TPC-C workload across a range of instance types. The SQL Server
database was hosted on a variety of storage types. The performance numbers
were logged and compared.

Amazon Web Services – SQL Server Performance on AWS

Page 2

Environment
The tests are run in the US East (N. Virginia) Region. The HammerDB client
machine and all SQL Server instances are launched in the same Availability
Zone and placement group.

The AMI used for testing is Amazon’s license-included SQL Server 2017
Enterprise (CU5) on Windows Server 2016.

 Windows_Server-2016-English-Full-SQL_2017_Enterprise-2018.04.11
(ami-ccb46cb3)

The AWS drivers on this AMI are:

 AWS PV driver 8.2
 AWS ENA driver 1.2.3.0
 AWS NVMe driver 1.0.0.146

HammerDB Workload
We use HammerDB to generate a large workload schema of 1,000 warehouses.
This database is backed up to an EBS volume and then a snapshot is taken. The
snapshot is used to create a new volume to attach to the SQL Server instances
being tested. The database backup is restored on to the target instance.

For more information about the HammerDB installation and workload
generation, see the appendix. In SQL Server Management Studio (SSMS), see
the TPC-C schema with 1,000 warehouses.

TPC-C schema with 1,000 warehouses

Amazon Web Services – SQL Server Performance on AWS

Page 3

Instance Types
A combination of eight General Purpose, Compute, Memory, and Storage-
optimized instances are chosen, which are the common instance types that
customers may consider for their high-performance workloads. All are Amazon
EBS-optimized instances.

Storage
General Purpose SSD (GP2) volumes offer cost-effective storage that is ideal for
a broad range of workloads. These volumes deliver:

 Single-digit millisecond latencies

 The ability to burst to 3,000 IOPS for extended periods of time

 A baseline performance of 3 IOPS/GiB up to a maximum of 10,000 IOPS
(at 3,334 GiB).

GP2 volumes can range in size from 1 GiB to 16 TiB. Customers can achieve
higher IOPS and throughput by striping multiple GP2 volumes together.

Some instance types include fast local instance store disks. These disks offer
great performance when properly configured.

Type Family vCPU Memory Instance
Storage

Network
Performance

EBS-
optimized:

Max
Bandwidth

EBS-
optimized:
Throughput

EBS-
optimized:
Max 16K

IOPS
General
Purpose

m5.xlarge 4 16 EBS only High 2,120 Mbps 265.0 MB/s 16,000 IOPS

Storage
Optimized

i3.2xlarge 8 61 1,900 GiB Up to 10
Gigabit

1,700 Mbps 212.5 MB/s 12,000 IOPS

Storage
Optimized

i3.4xlarge 16 122 3,800 GiB Up to 10
Gigabit

3,500 Mbps 437.5 MB/s 16,000 IOPS

Memory
Optimized

r4.4xlarge 16 122 EBS only Up to 10
Gigabit

3,500 Mbps 437.5 MB/s 18,750 IOPS

Memory
Optimized

r5d.4xlarge 16 128 600 GiB Up to 10
Gigabit

3,500 Mbps 437.5 MB/s 18,750 IOPS

Memory
Optimized

r4.8xlarge 32 244 EBS only 10 Gigabit 7,000 Mbps 875.0 MB/s 37,500 IOPS

Memory
Optimized

x1e.8xlarge 32 976 960 GiB Up to 10
Gigabit

3,500 Mbps 437.5 MB/s 20,000 IOPS

Memory
Optimized

r4.16xlarge 64 488 EBS only 25 Gigabit 14,000 Mbps 1750.0 MB/s 75,000 IOPS

Memory
Optimized

m5.24xlarge 96 384 EBS only 25 Gigabit 10,000 Mbps 1250.0 MB/s 65,000 IOPS

Amazon Web Services – SQL Server Performance on AWS

Page 4

SQL Server Configurations
The following SQL Server configuration settings ensure consistency and
comparability of results.

Max Degree of Parallelism
A few initial test runs showed TPM dropping due to inefficient parallel query
plans. We stabilized this by setting MAXDOP to 1 to prevent any parallel query
plans. For real workloads, you would examine those query plans and potentially
set MAXDOP to a more suitable number, for example, the number of vCPUs.

Max SQL Server Memory
We tried to keep the SQL settings as close as possible to the default install
settings. In the case of Max Server Memory, we opted to ensure that at least 4
GB was reserved for the operating system; that is, Max Server Memory = (Total
Server Memory – 4 GB).

Simple Mode
To limit the impact of unexpected transaction log growth and log space issues,
we put the workload database in SIMPLE mode.

Results
In this section, we walk through the configuration and performance numbers
for the three instance-type scenarios across which we ran TPC-C workloads.

Run 1 – GP2 Only
We started by testing GP2 volumes only.

Overview

GP2 volumes are the most cost-effective choice for non-demanding database
workloads requiring a high degree of durability. For the benchmark, we created
five 200-GB GP2 volumes.

Amazon Web Services – SQL Server Performance on AWS

Page 5

Five 200-GB GP2 volumes

We then added these five volumes to a pool on the instance using Windows
storage spaces and created a single disk from this pool. Striped together, these
GP2 volumes provide a single disk with 15,000 max burst IOPS (16K) and a
throughput of 800 MB/sec.

Five 200-GB GP2 volumes striped together to create a single disk

We then ran HammerDB for ten minutes on each instance type and recorded
the TPM for each batch of users.

Chart

TPM for each batch of users by instance type

Amazon Web Services – SQL Server Performance on AWS

Page 6

Conclusions

Performance is similar across instance types with single-digit users. As we
scaled up the number of concurrent users, we saw that the larger instance types
delivered higher TPM. Smaller instance types, like m5.xlarge and i3.2xlarge, are
limited by Amazon EBS throughput and hit a ceiling around 400,000 TPM.

Run 2 – GP2 with Transaction Log on Local NVMe
Disk
In our next scenario, we tested GP2 volumes with the transaction log on the
local NVMe disks.

Overview

For this test, we placed the transaction log on the local NVMe disks, which are
included with R5d instance types. We compared the results to those from where
the database is only on the GP2 volumes.

Chart

TPM for each batch of users for R5d and R5d

with the transaction log on local NVMe

Conclusions

Performance can be significantly improved by placing the transaction log on a
local NVMe store. In this case, the R5d instance includes local NVMe storage.

Warning: Local NVMe SSD storage is not automatically replicated like
Amazon EBS. If the instance is stopped or terminated, all data on the local SSD
may be lost. For more information, see Amazon EC2 Instance Store.

Amazon Web Services – SQL Server Performance on AWS

Page 7

Run 3 – All NVMe
Our last scenario tests volumes from the instance store NVMe disks

Overview

In this test, we created volumes from the instance store NVMe disks and placed
all data and log files on them.

Chart

TPM for each batch of users for i3.4xlarge on NVMe and i3.metal on NVMe

Conclusions

We were able to achieve over 3 million TPS with i3.metal. NVMe can be a good
choice for low-latency OLTP workloads.

Warning: Local NVMe SSD storage is not automatically replicated like
Amazon EBS. If the instance is stopped or terminated, all data on the local SSD
may be lost. For more information, see Amazon EC2 Instance Store.

Final Conclusions and Recommendations
As expected, the larger instance types performed better with larger workloads.
GP2 is a great storage choice for enterprise workloads, provided the volumes are
configured correctly. Local NVMe disks provide flexibility where ultra-low
latency is required.

Amazon Web Services – SQL Server Performance on AWS

Page 8

Appendix
The following procedure sets up HammerDB.

To configure HammerDB

1. Navigate to http://www.hammerdb.com/, choose Download, and
select the latest version for your Windows OS. As of 8/2018, it is Release
3.0.

2. Copy the downloaded file to the remote machine from which you plan on
running the test.

Note: This test uses a pre-created database (empty) set to SIMPLE
RECOVERY. This mode has a SQL-authenticated account (with
SysAdmin permissions), and pre-grown DB data and log files.

3. Navigate to C:\Program Files\HammerDB-3.0 and open hammerdb.bat.

4. In the Benchmark panel, choose SQL Server.

5. For Benchmark Options, ensure that both SQL Server and TPC-C
are select and choose OK.

6. Choose OK.

7. Choose TPC-C, Schema Build, and Options.

8. In the Options menu, fill out the form with the following information
and then choose OK:

 Your IP address (the SQL Server target against which the test runs).

 User ID (if you've designated a SQL-authenticated account).

 The password for the account.

 The number of warehouses. This example uses 1000, but you can
use as many as you like. However, a higher number of warehouses
takes more time to create.

 Increase the Virtual Users to Build Schema value to a number
closer to the vCPUs on the machine against which you are running
the test (SQL Server).

Amazon Web Services – SQL Server Performance on AWS

Page 9

TPC-C Build Options menu

9. In the Benchmark panel, choose Build. To confirm, choose Yes.

10. On the Virtual User Output tab, view messages about objects being
created and loaded.

11. To view the schema build operation, view the Disk Usage by Top
Tables report. Choose SSMS, Reports, Standard Reports, and
Disk Usage by Top Tables. Open the context (right-click) menu on
the database.

Amazon Web Services – SQL Server Performance on AWS

Page 10

Disk Usage by Top Tables report

12. Verify that the schema build is complete before moving on to the Driver
Script configuration. The following is an example of a completed build.

Schema Build Complete message

13. In the Benchmark pane, choose Driver Script, Options.

14. Enter the SQL Server IP address, your authentication method, SQL
Server database, and the type of TPC-C Driver Script option, and then
choose OK.

Amazon Web Services – SQL Server Performance on AWS

Page 11

TPC-C Build Options menu

15. In the Benchmark pane, choose Load.

16. To run a manual test (untimed), choose Virtual User, Options. This
example uses ten virtual users for the first test. Change this when
increasing the number of virtual users after each test is complete.
Uncheck Show Output, and choose OK.

Virtual Users Options window

Amazon Web Services – SQL Server Performance on AWS

Page 12

17. Choose Create so that the tool can create the user connections that the
HammerDB tool is establishing.

18. Choose Run and select the graph icon ().

19. Choose Transaction Counter to view the TPM metric. The metric
takes a few seconds to display.

20. To end the test, choose the red Stop icons (one stops the transactions
while the other stops the load).

21. To change the number of virtual users against which to run the TPC-C
HammerDB benchmark, repeat steps 16–20.

Contributors
The following individuals and organizations contributed to this document:

 Bini Berhe, solutions architect, AWS Solutions Architecture

 Alan Cranfield, systems engineer, AWS Windows Business

Document Revisions
Date Description

August 2018 First publication

